このたび、FLOSFIAは、酸化ガリウムのP層課題決着に向けて、ウルトラワイドバンドギャップP型半導体「酸化イリジウムガリウム」と組み合わせた構造によりジャンクションバリア効果実証に成功したことを発表いたしました。
■FLOSFIAプレスリリース(PDF)はこちら
【本研究開発のポイント】
FLOSFIAは、半導体により引き起こされる3つの環境負荷(エネルギー、プロセス、マテリアル)の低減を「半導体エコロジー®」と名付け、最終目標としています。そして、その具体的な取り組みとして京都大学発の新しいパワー半導体「酸化ガリウム(Ga2O3)」の普及を目指しています。この半導体エコロジー®を実現するためには、酸化ガリウムの物性値を最大限引き出すことが効果的で、FLOSFIAでは、酸化ガリウムと組み合わせて使う良質なP型半導体の実現が不可欠であると考えてきました。
図1:酸化ガリウムのみで作製したデバイスとP型半導体を組み合わせたデバイスとの比較
これまでに、FLOSFIAでは、京都大学と共同で2016年に酸化ガリウムと同じ結晶構造を有する新しいP型半導体「酸化イリジウム(α-Ir2O3)」の開発に成功して以降、新規P型半導体層のデバイス実証を進めてきました。今回、FLOSFIAでは、最先端のシリコンカーバイド(SiC)ダイオードでも用いられているJBS構造を酸化ガリウムデバイスに適用し、酸化イリジウムガリウム【α-(IrGa)2O3】(以下「酸化イリジウムガリウム」という)薄膜をP型半導体層として埋め込み成長することで、ジャンクションバリア効果によるリーク電流抑制の実証に世界で初めて成功いたしました(図2、図3)。
今回用いた酸化イリジウムガリウムはウルトラワイドバンドギャップ半導体で、バンドギャップは約5eVと極めて大きく、ホール濃度は1×1019cm-3と高濃度であることを確認しており、高電界を前提とした幅広いデバイス設計に適用可能であることが示唆されます。そして、酸化ガリウムデバイスは、この酸化イリジウムガリウムと組み合わせることにより、SBDやMOSFET、IGBTなど様々なパワーデバイスとして特性を最大化でき、小さなチップで大電流を流せることが出来るようになります。さらに、デバイスの低コスト化が期待できるなど、半導体エコロジー®の実現に向けて大きな前進を果たせると考えています。
【本研究成果】
まず、酸化ガリウムn-層の一部にトレンチ構造を作製し、新規P型半導体を埋め込んで結晶成長を行いました(図2)。結晶成長にはFLOSFIA独自のミストドライ®法を用い、チップサイズは約0.9mm程度、トレンチ構造のラインアンドスペースの大きさは各1µmとしました。
その後、作製したJBS構造チップに逆方向電圧を印加し、酸化イリジウムガリウムの埋込構造によるリーク電流の抑制効果を確認しました(比較対象には、同一ウエハ内に作製したSBDを使用)。また、温度を25℃から125℃に上げたとき、さらに抑制効果は大きくなることを確認しました。
図2:JBS構造に酸化イリジウムガリウムを適用
図3:逆方向特性
【今後の展開】
今回の研究成果であるJBS構造はFLOSFIAのコランダム型酸化ガリウム(α-Ga2O3)パワーデバイス「GaO®」シリーズの第2世代ダイオードから適用予定です。立ち上がり電圧の低減による順方向電圧降下Vfの低減が期待できることから、これまでの特徴であった高速動作性に加えて、100kHz以下の周波数領域で用いるインバーターその他の幅広い電力変換器への適用を目指します。その後MOSFETやIGBT等のトランジスタにも新規P型半導体「酸化イリジウムガリウム」の適用を目指します。電力変換器の例としては、ACアダプタなどの商用電源、ロボットの駆動回路、電気自動車、エアコンや冷蔵庫などの白物家電、太陽電池のパワーコンディショナなどが挙げられ、GaO®パワーデバイスの採用により、「電力変換器全体の小型化や低コスト化の限界」の突破を目指します。機器の種類にもよりますが、例えば、電力変換器の小型化の程度は、数十分の一に及ぶことがあり、コスト低減効果は電力変換器全体の50%に及ぶことが期待されます(FLOSFIA試算)。
【謝辞】
今回の研究成果は、新エネルギー・産業技術総合開発機構(NEDO)の「省エネエレクトロニクスの製造基盤強化に向けた技術開発事業」よる支援を受けて実施されました。
【本件に関するお問い合わせ先】
株式会社FLOSFIA コーポレートサポート部(担当:間嶋)
Email:info(アット)flosfia.com
※「GaO®」・「ミストドライ®」・「半導体エコロジー®」はFLOSFIAの登録商標です。